By Topic

A system model and inversion for synthetic aperture radar imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Soumekh, M. ; Dept. of Electr. & Comput. Eng., State Univ. of New York, Buffalo, Amherst, NY, USA

A system model and its corresponding inversion for synthetic aperture radar (SAR) imaging are presented. The system model incorporates the spherical nature of a radar's radiation pattern at far field. The inverse method based on this model performs a spatial Fourier transform (Doppler processing) on the recorded signals with respect to the available coordinates of a translational radar (SAR) or target (inverse SAR). It is shown that the transformed data provide samples of the spatial Fourier transform of the target's reflectivity function. The inverse method can be modified to incorporate deviations of the radar's motion from its prescribed straight line path. The effects of finite aperture on resolution, reconstruction, and sampling constraints for the imaging problem are discussed

Published in:

Image Processing, IEEE Transactions on  (Volume:1 ,  Issue: 1 )