By Topic

Multiplication free vector quantization using L1 distortion measure and its variants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Mathews, V.J. ; Dept. of Electr. Eng., Utah Univ., Salt Lake City, UT, USA

The author considers vector quantization that uses the L 1 distortion measure for its implementation. A gradient-based approach for codebook design that does not require any multiplications or median computation is proposed. Convergence of this method is proved rigorously under very mild conditions. Simulation examples comparing the performance of this technique with the LBG algorithm show that the gradient-based method, in spite of its simplicity, produces codebooks with average distortions that are comparable to the LBG algorithm. The codebook design algorithm is then extended to a distortion measure that has piecewise-linear characteristics. Once again, by appropriate selection of the parameters of the distortion measure, the encoding as well as the codebook design can be implemented with zero multiplications. The author applies the techniques in predictive vector quantization of images and demonstrates the viability of multiplication-free predictive vector quantization of image data

Published in:

Image Processing, IEEE Transactions on  (Volume:1 ,  Issue: 1 )