Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A real-time learning algorithm for a multilayered neural network based on the extended Kalman filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Iiguni, Y. ; Fac. of Eng., Kyoto Univ., Japan ; Sakai, H. ; Tokumaru, H.

A novel real-time learning algorithm for a multilayered neural network is derived from the extended Kalman filter (EKF). Since this EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights, the convergence performance is improved in comparison with the backwards error propagation algorithm using the steepest descent techniques. Furthermore, tuning parameters which crucially govern the convergence properties are not included, which makes its application easier. Simulation results for the XOR and parity problems are provided

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 4 )