By Topic

A Bayesian estimation approach for speech enhancement using hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ephraim, Y. ; AT&T Bell Lab., Murray Hill, NJ, USA

A Bayesian estimation approach for enhancing speech signals which have been degraded by statistically independent additive noise is motivated and developed. In particular, minimum mean square error (MMSE) and maximum a posteriori (MAP) signal estimators are developed using hidden Markov models (HMMs) for the clean signal and the noise process. It is shown that the MMSE estimator comprises a weighted sum of conditional mean estimators for the composite states of the noisy signal, where the weights equal the posterior probabilities of the composite states given the noisy signal. The estimation of several spectral functionals of the clean signal such as the sample spectrum and the complex exponential of the phase is also considered. A gain-adapted MAP estimator is developed using the expectation-maximization algorithm. The theoretical performance of the MMSE estimator is discussed, and convergence of the MAP estimator is proved. Both the MMSE and MAP estimators are tested in enhancing speech signals degraded by white Gaussian noise at input signal-to-noise ratios of from 5 to 20 dB

Published in:

Signal Processing, IEEE Transactions on  (Volume:40 ,  Issue: 4 )