Cart (Loading....) | Create Account
Close category search window
 

Semiconductor-metal hybrid structures: novel perspective for read heads

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Holz, M. ; Fachbereich Elektrotechnik, Univ. der Bundeswehr Hamburg, Germany ; Kronenwerth, Oliver ; Grundler, D.

Recently, it was shown that semiconductor-metal hybrid structures can exhibit a very large magnetoresistance effect, the so-called extraordinary magnetoresistance (EMR) effect. This led to the perspective of using EMR devices in magnetic-field sensors and ultrafast read heads. Based on the finite element method, we study the EMR and optimize the effect with respect to material parameters and geometry. As the important design rule we find that the width-to-length ratio of a rectangular device should be below 0.042. This holds for a broad regime of mobility μ in the semiconductor and specific contact resistance ρc between the semiconductor and the metal.

Published in:

Sensors, 2003. Proceedings of IEEE  (Volume:2 )

Date of Conference:

22-24 Oct. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.