By Topic

A bound on mean-square estimation error with background parameter mismatch

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wen Xu ; Dept. of Ocean Eng., Massachusetts Inst. of Technol., Cambridge, MA, USA ; A. B. Baggeroer ; K. L. Bell

In typical parameter estimation problems, the signal observation is a function of the parameter set to be estimated as well as some background (environmental/system) parameters assumed known. The assumed background could differ from the true one, leading to biased estimates even at high signal-to-noise ratio (SNR). To analyze this background mismatch problem, a Ziv-Zakai-type lower bound on the mean-square error (MSE) is developed based on the mismatched likelihood ratio test (MLRT). At high SNR, the bound incorporates the increase in MSE due to estimation bias; at low SNR, it includes the threshold effect due to estimation ambiguity. The kernel of the bound's evaluation is the error probability associated with the MLRT. A closed-form expression for this error probability is derived under a random signal model typical of the bearing estimation/passive source localization problem. The mismatch is then analyzed in terms of the related ambiguity functions. Examples of bearing estimation with system (array shape) mismatch demonstrate that the developed bound describes the simulations of the maximum-likelihood estimate well, including the sidelobe-introduced threshold behavior and the bias at high SNR.

Published in:

IEEE Transactions on Information Theory  (Volume:50 ,  Issue: 4 )