By Topic

A 50-mW/ch 2.5-Gb/s/ch data recovery circuit for the SFI-5 interface with digital eye-tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Miki, Y. ; Central Res. Lab., Hitachi Ltd., Tokyo, Japan ; Saito, T. ; Yamashita, H. ; Yuki, F.
more authors

This paper describes a 2.5-Gb/s/ch digital data recovery (DR) circuit for the SFI-5 interface. Although minimizing the circuit area has become critical in multibit interfaces such as the SFI-5, few studies have proposed a practical method of reducing the area of data recovery circuits. We introduce a digital-PLL-type DR circuit design with eye-tracking, which we developed to minimize the circuit area and power consumption without degrading tolerance against jitter. This novel method of data recovery enabled us to simplify the circuit design against process, voltage, and temperature variations. Design considerations on how to eliminate high-frequency jitter and how to track long-term wander are described. The design for 2.5-GHz clock distribution is also discussed. The area of the DR circuit, fabricated with 0.18-μm SiGe BiCMOS technology, is 0.02 mm2/ch, and its power consumption is 50 mW/ch at 1.8 V. The measured tolerance against jitter at 2.5 Gb/s is 0.7 UI peak-to-peak, which satisfies the jitter specifications for the SFI-5.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 4 )