By Topic

Zero skew clock-tree optimization with buffer insertion/sizing and wire sizing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jeng-Liang Tsai ; Electr. & Comput. Eng. Dept., Univ. of Wisconsin, Madison, WI, USA ; Tsung-Hao Chen ; Chen, C.C.-P.

Clock distribution is crucial for timing and design convergence in high-performance very large scale integration designs. Minimum-delay/power zero skew buffer insertion/sizing and wire-sizing problems have long been considered intractable. In this paper, we present ClockTune , a simultaneous buffer insertion/sizing and wire-sizing algorithm which guarantees zero skew and minimizes delay and power in polynomial time. Extensive experimental results show that our algorithm executes very efficiently. For example, ClockTune achieves 45× delay improvement for buffering and sizing an industrial clock tree with 3101 sink nodes on a 1.2-GHz Pentium IV PC in 16 min, compared with the initial routing. Our algorithm can also be used to achieve useful clock skew to facilitate timing convergence and to incrementally adjust the clock tree for design convergence and explore delay-power tradeoffs during design cycles. ClockTune is available on the web (http://vlsi.ece.wisc.edu/Tools.htm).

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:23 ,  Issue: 4 )