By Topic

Time-domain beam propagation method for nonlinear optical propagation analysis and its application to photonic Crystal circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Fujisawa ; Div. of Electron. & Inf. Eng., Hokkaido Univ., Sapporo, Japan ; M. Koshiba

A time-domain beam propagation method (BPM) based on a finite-element scheme is newly formulated for nonlinear optical propagation analysis. In order to obtain steady-state solutions, a way of continuous-wave (CW) excitation is also described. The validity of this method is verified by numerical examples: self-focusing guiding phenomena and nonlinear gratings. Furthermore, this approach is also applied to characterizing nonlinear photonic crystal circuits. Specifically, a grating structure designed to modify the characteristics of light propagating within a photonic crystal waveguide and a stub-like structure including nonlinear rods are proposed, and the potential for use as optical limiting and switching devices is investigated.

Published in:

Journal of Lightwave Technology  (Volume:22 ,  Issue: 2 )