Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Investigation of a 2R all-optical regenerator based on four-wave mixing in a semiconductor optical amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Simos, H. ; Dept. of Informatics & Telecommun., Univ. of Athens, Greece ; Bogris, A. ; Syvridis, D.

The properties of an all-optical 2R regenerator based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) are investigated. The regeneration is based on the nonlinear FWM transfer function and a study of the system's static behavior reveals the operating conditions, under which the transfer function approaches most the ideal, step-like discrimination characteristic function. A fiber Bragg grating (FBG) is employed in order to overcome the SOAs speed limitations due to limited carrier dynamics. The simulations with dynamic input data by means of extinction ratio (ER) and Q-factor calculations, showed satisfactory regenerative behavior up to 40 Gb/s.

Published in:

Lightwave Technology, Journal of  (Volume:22 ,  Issue: 2 )