By Topic

Equalizers for multiple input/multiple output channels and PAM systems with cyclostationary input sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Duel-Hallen, A. ; Bell Lab., Murray Hill, NJ, USA

The author studies minimum mean square error (MMSE) linear and decision feedback (DF) equalisers for multiple input/multiple output (MIMO) communication systems with intersymbol interference (ISI) and wide-sense stationary (WSS) inputs. To derive these equalizers, one works in the D-transform domain and uses prediction theory results. Partial-response MMSE equalizers are also found. As an application, the author considers a pulse amplitude modulation (PAM) communication system with ISI and cyclostationary inputs. The MMSE linear and DF equalizers are determined by studying an equivalent MIMO system. The resulting filters are expressed in compact matrix notation and are time-invariant, whereas the corresponding single input/single output filters are periodically time-invariant. The author also considers MMSE equalizers for a wide-sense stationary process by introducing a `random phase'. To aid in the performance evaluation of various equalizers, the author derives their mean square errors

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:10 ,  Issue: 3 )