By Topic

Fourier domain scoring: a novel document ranking method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Park, L.A.F. ; Univ. of Melbourne, Vic., Australia ; Ramamohanarao, K. ; Palaniswami, M.

Current document retrieval methods use a vector space similarity measure to give scores of relevance to documents when related to a specific query. The central problem with these methods is that they neglect any spatial information within the documents in question. We present a new method, called Fourier Domain Scoring (FDS), which takes advantage of this spatial information, via the Fourier transform, to give a more accurate ordering of relevance to a document set. We show that FDS gives an improvement in precision over the vector space similarity measures for the common case of Web like queries, and it gives similar results to the vector space measures for longer queries.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:16 ,  Issue: 5 )