By Topic

Improved approximate maximum-likelihood receiver for differential space-time block codes over Rayleigh-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tarasak, P. ; Dept. of Electr. & Comput. Eng., Univ. of Victoria, BC, Canada ; Minn, H. ; Bhargava, V.K.

In this paper, an approximate maximum-likelihood (ML) receiver for differential space-time block codes is investigated. The receiver is derived from the ML criterion and is shown to mitigate error floor occurring in a conventional differential receiver very well. Because the receiver employs knowledges of signal-to-noise ratio (SNR) and fading rate, we study mismatched cases when these parameters are not accurate. It is shown that the receiver is more sensitive to the mismatched parameters when the fading rate is high. Then, a union bound on the bit error probability is derived. The bounds show good agreement with the simulation results at high fading rate and at high SNR. Finally, a modified receiver, denoted as multistage receiver, is proposed to compensate the so-called intrablock interference caused by the time-varying characteristic of the channel within a transmission block. The multistage receiver offers further reduction of error floor of about half order of magnitude as compared with an approximate ML receiver.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 2 )