By Topic

A 2-D random-walk mobility model for location-management studies in wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kuo-Hsing Chiang ; R. Melbourne Inst. of Technol., Univ., RMIT, Vic., Australia ; Shenoy, N.

In this work, a novel two-dimensional (2-D) random-walk mobility model is proposed, which can be used for studying and analyzing the location-area crossing rate and dwell time of mobile users in wireless networks. The development and application of the model under two cell structures, namely the square and hexagon cells, have been detailed. The analytical results obtained for location-update rates and dwell times have been validated using simulated and published results. The highlights of the model are its simplicity, minimal assumptions, and adaptability to conduct both "location-crossing rate" and "dwell-time" studies using the same model with slight modifications for either the square or hexagon cells. Using symmetry of mobile-user movement, a reduced number of computational states was achieved. A novel wrap-around feature of the model facilitates reduced assumptions on user mobility, which has also resulted in considerably reduced mathematical computation complexity. A regular Markov chain model was used for computing the average location-area crossing rate. A slightly modified model with absorbing states was used to derive the dwell time. This is the first model of its kind that can be used for studying area-crossing rates. To further emphasize the flexibility of the model, we have extended the model to study an overlapped location-area strategy. The study and analysis of overlapped locations areas has hitherto been difficult due to the complexity of the models.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 2 )