By Topic

Lateral control of higher order nonlinear vehicle model in emergency maneuvers using absolute positioning GPS and magnetic markers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The performance of an automatic steering system based on an absolute positioning global positioning system (GPS) and a magnetic marker reference system during emergency situations is examined in this paper, as it is a vital safety issue in highway automation. Robust control technique in the form of parameter space approach in an invariance plane is utilized for lateral controller design based on a higher order nonlinear vehicle model. In addition, the control system incorporates an exponential smoothing algorithm based on road curvature preview for vehicle-handling enhancement. The proposed estimation and control system is shown, in computer simulations, to be effective in handling vehicle emergency situations.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 2 )