Cart (Loading....) | Create Account
Close category search window
 

BER performance of linear STBC from orthogonal designs over MIMO correlated Nakagami-m fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Femenias, G. ; Dept. de Matematiques i Informatica, Univ. de les Illes Balears, Spain

This paper presents the evaluation of the average bit error rate (BER) performance of linear space-time block codes (STBC) from orthogonal designs over correlated identically distributed Nakagami-m fading channels. Starting from the moment-generating function (MGF) of the multipath component signals at the antenna array elements, analytical expressions of the BER performance for both integral and nonintegral Nakagami-m fading parameters are derived. Closed-form expressions of the spatial cross-correlation function for mobile nonfrequency selective Nakagami-m fading multiple-input-multiple-output (MIMO) channels are obtained, which are valid for small angle-of-arrival (AOA) spread. In this expressions, various parameters of interest, such as the mean AOA of the signal, AOA spread, and array configurations, are all taken into account. The effects of antenna array configuration and the operating environment (mean AOA, AOA spread, Nakagami fading parameter) on the BER performance of the system are illustrated by several numerical examples.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:53 ,  Issue: 2 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.