By Topic

A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shing-Chow Chan ; Dept. of Electr. & Electron. Eng., Univ. of Hong Kong, China ; Yue-Xian Zou

This paper studies the problem of robust adaptive filtering in impulsive noise environment using a recursive least M-estimate algorithm (RLM). The RLM algorithm minimizes a robust M-estimator-based cost function instead of the conventional mean square error function (MSE). Previous work has showed that the RLM algorithm offers improved robustness to impulses over conventional recursive least squares (RLS) algorithm. In this paper, the mean and mean square convergence behaviors of the RLM algorithm under the contaminated Gaussian impulsive noise model is analyzed. A lattice structure-based fast RLM algorithm, called the Huber Prior Error Feedback-Least Squares Lattice (H-PEF-LSL) algorithm is derived. Part of the H-PEF-LSL algorithm was presented in ICASSP 2001. It has an order O(N) arithmetic complexity, where N is the length of the adaptive filter, and can be viewed as a fast implementation of the RLM algorithm based on the modified Huber M-estimate function and the conventional PEF-LSL adaptive filtering algorithm. Simulation results show that the transversal RLM and the H-PEF-LSL algorithms have better performance than the conventional RLS and other RLS-like robust adaptive algorithms tested when the desired and input signals are corrupted by impulsive noise. Furthermore, the theoretical and simulation results on the convergence behaviors agree very well with each other.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 4 )