By Topic

A matrix-valued wavelet KL-like expansion for wide-sense stationary random processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ping Zhao ; Dept. of Inf. & Commun. Eng., Xi'an Jiaotong Univ., Shaanxi, China ; Guizhong Liu ; Chun Zhao

Matrix-valued wavelet series expansions for wide-sense stationary processes are studied in this paper. The expansion coefficients a are uncorrelated matrix random process, which is a property similar to that of a matrix Karhunen-Loe`ve (MKL) expansion. Unlike the MKL expansion, however, the matrix wavelet expansion does not require the solution of the eigen equation. This expansion also has advantages over the Fourier series, which is often used as an approximation to the MKL expansion in that it completely eliminates correlation. The basis functions of this expansion can be obtained easily from wavelets of the Matrix-valued Lemarie´-Meyer type and the power-spectral density of the process.

Published in:

IEEE Transactions on Signal Processing  (Volume:52 ,  Issue: 4 )