By Topic

An improved pipelined MSB-first add-compare select unit structure for Viterbi decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Parhi, K.K. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA

Convolutional codes are widely used in many communication systems due to their excellent error-control performance. High-speed Viterbi decoders for convolutional codes are of great interest for high-data-rate applications. In this paper, an improved most-significant-bit (MSB) -first bit-level pipelined add-compare select (ACS) unit structure is proposed. The ACS unit is the main bottleneck on the decoding speed of a Viterbi decoder. By balancing the settling time of different paths in the ACS unit, the length of the critical path is reduced as close as possible to the iteration bound in the ACS unit. With the proposed retimed structure, it is possible to decrease the critical path of the ACS unit by 12% to 15% compared with the conventional MSB-first structures. This reduction in critical path can reduce the level of parallelism (and area) required for a very high-speed Viterbi decoder.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:51 ,  Issue: 3 )