By Topic

Enhanced independent component analysis and its application to content based face image retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chengjun Liu ; Dept. of Comput. Sci., New Jersey Inst. of Technol., Newark, NJ, USA

This paper describes an enhanced independent component analysis (EICA) method and its application to content based face image retrieval. EICA, whose enhanced retrieval performance is achieved by means of generalization analysis, operates in a reduced principal component analysis (PCA) space. The dimensionality of the PCA space is determined by balancing two competing criteria: the representation criterion for adequate data representation and the magnitude criterion for enhanced retrieval performance. The feasibility of the new EICA method has been successfully tested for content-based face image retrieval using 1,107 frontal face images from the FERET database. The images are acquired from 369 subjects under variable illumination, facial expression, and time (duplicated images). Experimental results show that the independent component analysis (ICA) method has poor generalization performance while the EICA method has enhanced generalization performance; the EICA method has better performance than the popular face recognition methods, such as the Eigenfaces method and the Fisherfaces method.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 2 )