By Topic

Stabilization of nonlinear nonminimum phase systems: adaptive parallel approach using recurrent fuzzy neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ching-Hung Lee ; Dept. of Electr. Eng., Yuan Ze Univ., Taoyuan, Taiwan

In this paper, an adaptive parallel control architecture to stabilize a class of nonlinear systems which are nonminimum phase is proposed. For obtaining an on-line performance and self-tuning controller, the proposed control scheme contains recurrent fuzzy neural network (RFNN) identifier, nonfuzzy controller, and RFNN compensator. The nonfuzzy controller is designed for nominal system using the techniques of backstepping and feedback linearization, is the main part for stabilization. The RFNN compensator is used to compensate adaptively for the nonfuzzy controller, i.e., it acts like a fine tuner; and the RFNN identifier provides the system's sensitivity for tuning the controller parameters. Based on the Lyapunov approach, rigorous proofs are also presented to show the closed-loop stability of the proposed control architecture. With the aid of the RFNN compensators, the parallel controller can indeed improve system performance, reject disturbance, and enlarge the domain of attraction. Furthermore, computer simulations of several examples are given to illustrate the applicability and effectiveness of this proposed controller.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 2 )