By Topic

Joint segmentation and classification of time series using class-specific features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Z.J. ; Electr. & Comput. Dept., Maryland Univ., College Park, MD, USA ; Willett, P.

We present an approach for the joint segmentation and classification of a time series. The segmentation is on the basis of a menu of possible statistical models: each of these must be describable in terms of a sufficient statistic, but there is no need for these sufficient statistics to be the same, and these can be as complex (for example, cepstral features or autoregressive coefficients) as fits. All that is needed is the probability density function (PDF) of each sufficient statistic under its own assumed model-presumably this comes from training data, and it is particularly appealing that there is no need at all for a joint statistical characterization of all the statistics. There is similarly no need for an a-priori specification of the number of sections, as the approach uses an appropriate penalization of an over-zealous segmentation. The scheme has two stages. In stage one, rough segmentations are implemented sequentially using a piecewise generalized likelihood ratio (GLR); in the second stage, the results from the first stage (both forward and backward) are refined. The computational burden is remarkably small, approximately linear with the length of the time series, and the method is nicely accurate in terms both of discovered number of segments and of segmentation accuracy. A hybrid of the approach with one based on Gibbs sampling is also presented; this combination is somewhat slower but considerably more accurate.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 2 )