Cart (Loading....) | Create Account
Close category search window
 

Modeling and convergence analysis of distributed coevolutionary algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Subbu, R. ; Gen. Electr. Global Res., Niskayuna, NY, USA ; Sanderson, A.C.

A theoretical foundation is presented for modeling and convergence analysis of a class of distributed coevolutionary algorithms applied to optimization problems in which the variables are partitioned among p nodes. An evolutionary algorithm at each of the p nodes performs a local evolutionary search based on its own set of primary variables, and the secondary variable set at each node is clamped during this phase. An infrequent intercommunication between the nodes updates the secondary variables at each node. The local search and intercommunication phases alternate, resulting in a cooperative search by the p nodes. First, we specify a theoretical basis for a class of centralized evolutionary algorithms in terms of construction and evolution of sampling distributions over the feasible space. Next, this foundation is extended to develop a model for a class of distributed coevolutionary algorithms. Convergence and convergence rate analyses are pursued for basic classes of objective functions. Our theoretical investigation reveals that for certain unimodal and multimodal objectives, we can expect these algorithms to converge at a geometrical rate. The distributed coevolutionary algorithms are of most interest from the perspective of their performance advantage compared to centralized algorithms, when they execute in a network environment with significant local access and internode communication delays. The relative performance of these algorithms is therefore evaluated in a distributed environment with realistic parameters of network behavior.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 2 )

Date of Publication:

April 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.