By Topic

Efficient and accurate analytical modeling of whole-program data cache behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jingling Xue ; Sch. of Comput. Sci. & Eng., New South Wales Univ., Sydney, NSW, Australia ; Vera, X.

Data caches are a key hardware means to bridge the gap between processor and memory speeds, but only for programs that exhibit sufficient data locality in their memory accesses. Thus, a method for evaluating cache performance is required to both determine quantitatively cache misses and to guide data cache optimizations. Existing analytical models for data cache optimizations target mainly isolated perfect loop nests. We present an analytical model that is capable of statically analyzing not only loop nest fragments, but also complete numerical programs with regular and compile-time predictable memory accesses. Central to the whole-program approach are abstract call inlining, memory access vectors, and parametric reuse analysis, which allow the reuse and interference both within and across loop nests to be quantified precisely in a unified framework. Based on the framework, the cache misses of a program are specified using mathematical formulas and the miss ratio is predicted from these formulas based on statistical sampling techniques. Our experimental results using kernels and whole programs indicate accurate cache miss estimates in a substantially shorter amount of time (typically, several orders of magnitude faster) than simulation.

Published in:

Computers, IEEE Transactions on  (Volume:53 ,  Issue: 5 )