By Topic

A multipipe model of general strip transmission lines for rapid convergence of integral equation singularities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. E. Howard ; British Columbia Univ., Vancouver, BC, Canada ; J. J. Yang ; Y. L. Chow

An integral equation for solving thin conducting strip problems always involves three singularities, namely, two charge singularities at the strip edges and the Green's function singularity for close proximity of source and field points. This work overcomes the singularity convergence problem using Gauss-Chebyshev quadrature for the edge charges, but more importantly by a multipipe model for the Green's function singularity. This model applies equally well to both two-dimensional (2-D) and three-dimensional (3-D) problems of metallic strips embedded in multilayer dielectric substrates. To reduce the scope, however, this work analyzes only the quasi-TEM (transverse electromagnetic) cases of 2-D thin-strip transmission lines in multilayer dielectric substrates

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:40 ,  Issue: 4 )