Cart (Loading....) | Create Account
Close category search window
 

Hybrid neural document clustering using guided self-organization and WordNet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chihli Hung ; Hybrid Intelligent Syst., Univ. of Sunderland, UK ; Wermter, S. ; Smith, P.

Document clustering is text processing that groups documents with similar concepts. It's usually considered an unsupervised learning approach because there's no teacher to guide the training process, and topical information is often assumed to be unavailable. A guided approach to document clustering that integrates linguistic top-down knowledge from WordNet into text vector representations based on the extended significance vector weighting technique improves both classification accuracy and average quantization error. In our guided self-organization approach we integrate topical and semantic information from WordNet. Because a document-training set with preclassified information implies relationships between a word and its preference class, we propose a novel document vector representation approach to extract these relationships for document clustering. Furthermore, merging statistical methods, competitive neural models, and semantic relationships from symbolic Word-Net, our hybrid learning approach is robust and scales up to a real-world task of clustering 100,000 news documents.

Published in:

Intelligent Systems, IEEE  (Volume:19 ,  Issue: 2 )

Date of Publication:

Mar-Apr 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.