By Topic

A haptic-rendering technique based on hybrid surface representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Laehyun Kim ; Syst. Technol. Div., Korea Inst. of Sci. & Technol., Seoul, South Korea ; G. S. Sukhatme ; M. Desbrun

A novel haptic rendering technique using a hybrid surface representation addresses conventional limitations in haptic displays. A haptic interface lets the user touch, explore, paint, and manipulate virtual 3D models in a natural way using a haptic display device. A haptic rendering algorithm must generate a force field to simulate the presence of these virtual objects and their surface properties (such as friction and texture), or to guide the user along a specific trajectory. We can roughly classify haptic rendering algorithms according to the surface representation they use: geometric haptic algorithms for surface data, and volumetric haptic algorithms based on volumetric data including implicit surface representation. Our algorithm is based on a hybrid surface representation - a combination of geometric (B-rep) and implicit (V-rep) surface representations for a given 3D object, which takes advantage of both surface representations.

Published in:

IEEE Computer Graphics and Applications  (Volume:24 ,  Issue: 2 )