Cart (Loading....) | Create Account
Close category search window
 

Kv channel S6 helix as a molecular switch: simulation studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bright, J.N. ; Res. Sch. of Chem., Australian Nat. Univ., Canberra, ACT, Australia ; Sansom, M.S.P.

Ion channels form pores of nanoscopic dimensions in biological membranes and play a key role in the physiology of cells. The majority of ion channels are gated, i.e. they contain a molecular switch that allows a transition between a closed (functionally 'off') and open (functionally 'on') state. Comparison of crystal structures of potassium channels suggest that the gating mechanism of voltage-gated potassium (Kv) channels involves a key role for the pore-lining S6 helix. There is a conserved PVP sequence motif in the S6 helix. Molecular dynamics simulations are used here to explore the conformational dynamics of the S6 helix hinge in models of fragments of a Kv channel, namely an S5-P-S6 monomer and an (S5-P-S6)4 tetramer. The latter is a model of the complete pore-forming domain of a Kv channel. All models were simulated embedded in an octane slab (a simple membrane mimetic). The results of these simulations indicate that the PVP motif may form a molecular hinge, even when the S6 helix forms part of a more complex model. The conformational dynamics of S6 are modulated by the remainder of protein, but it remains flexible. These simulation results are compatible with a channel gating model in which S6 bends in the vicinity of the PVP motif in addition to the region around the conserved glycine (G466) that is N-terminal to the PVP motif. This model is supported by comparison of the Kv S6 models with the S6 helix of the bacterial KvAP channel crystal structure. Thus, K channel gating may depend on a complex nanoswitch with three rigid helical sections linked by two molecular hinges.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:151 ,  Issue: 1 )

Date of Publication:

5 Feb. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.