By Topic

Speeding up processing with approximation circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Current microprocessors employ a global timing reference to synchronize data transfer. A synchronous system must know the maximum time needed to compute a function, but a circuit usually finishes computation earlier than the worst-case delay. The system nevertheless waits for the maximum time bound to guarantee a correct result. As a first step in achieving variable pipeline delays based on data values, approximation circuits can increase clock frequency by reducing the number of cycles a function requires. Instead of implementing the complete logic function, a simplified circuit mimics it using rough calculations to predict results. The results are correct most of the time, and simulations show improvements in overall performance in spite of the overhead needed to recover from mistakes.

Published in:

Computer  (Volume:37 ,  Issue: 3 )