Cart (Loading....) | Create Account
Close category search window
 

A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fumeaux, C. ; Lab. for Electromagn. Fields & Microwave Electron., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Baumann, D. ; Leuchtmann, P. ; Vahldieck, R.

A new generalized local time-step scheme is introduced to improve the computational efficiency of the finite-volume time-domain (FVTD) method. The flexibility of unstructured FVTD meshes is fully exploited by avoiding the disadvantage of a single short time step in the entire mesh. The great potential of this scheme is fully revealed in the FVTD simulation of electromagnetic (EM) problems with both large and fine structures in close proximity. The scheme is based on an automatic partition of the computational domain in subdomains where local time steps of the type 2ℓ-1Δt(ℓ=1,2,3,...) can be applied without violating the stability condition. Interfaces between subdomains are reduced to a generic two-level system which requires a very limited number of time interpolations during the FVTD iteration, therefore resulting in a very simple and robust technique. The application of local time stepping to three-dimensional EM problems demonstrates a significant speed-up of the computation without compromising the accuracy of the results.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 3 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.