By Topic

Balancing networks for symmetric antennas: part II-practical implementation and modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. S. McLean ; TDK R&D Corp., Cedar Park, TX, USA

The practical aspects of implementing the three fundamental types of balancing networks presented in the first part of this paper, using a 180° 4-port hybrid network are investigated. It is shown, for the first time, that the use of attenuators between the hybrid and the antenna detracts from the ability of the balanced-to-unbalanced network (balun) to balance any of the three quantities: current, voltage, or forward power. It is shown that additional time delay or linear phase shift, even when made equal for each port, makes the implementation of a current or voltage balun difficult over a broad frequency range although narrowband operation is still possible. Thus, the placement of phase-matched coaxial lines between the balun and the antenna is not desirable. It is shown that the equal-delay hybrid is uniquely adapted for the realization of a voltage or current balun. Finally, the modeling of symmetric antennas as driven by each fundamental type of balun is presented.

Published in:

IEEE Transactions on Electromagnetic Compatibility  (Volume:46 ,  Issue: 1 )