By Topic

A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Plaza, A. ; Comput. Sci. Dept., Univ. of Extremadura, Caceres, Spain ; Martinez, P. ; Perez, R. ; Plaza, J.

Linear spectral unmixing is a commonly accepted approach to mixed-pixel classification in hyperspectral imagery. This approach involves two steps. First, to find spectrally unique signatures of pure ground components, usually known as endmembers, and, second, to express mixed pixels as linear combinations of endmember materials. Over the past years, several algorithms have been developed for autonomous and supervised endmember extraction from hyperspectral data. Due to a lack of commonly accepted data and quantitative approaches to substantiate new algorithms, available methods have not been rigorously compared by using a unified scheme. In this paper, we present a comparative study of standard endmember extraction algorithms using a custom-designed quantitative and comparative framework that involves both the spectral and spatial information. The algorithms considered in this study represent substantially different design choices. A database formed by simulated and real hyperspectral data collected by the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is used to investigate the impact of noise, mixture complexity, and use of radiance/reflectance data on algorithm performance. The results obtained indicate that endmember selection and subsequent mixed-pixel interpretation by a linear mixture model are more successful when methods combining spatial and spectral information are applied.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:42 ,  Issue: 3 )