By Topic

Synthesis and rendering of bidirectional texture functions on arbitrary surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xinguo Liu ; Microsoft Res. Asia, Beijing, China ; Yaohua Hu ; Jingdan Zhang ; Xin Tong
more authors

The bidirectional texture function (BTF) is a 6D function that describes the appearance of a real-world surface as a function of lighting and viewing directions. The BTF can model the fine-scale shadows, occlusions, and specularities caused by surface mesostructures. We present algorithms for efficient synthesis of BTFs on arbitrary surfaces and for hardware-accelerated rendering. For both synthesis and rendering, a main challenge is handling the large amount of data in a BTF sample. To addresses this challenge, we approximate the BTF sample by a small number of 4D point appearance functions (PAFs) multiplied by 2D geometry maps. The geometry maps and PAFs lead to efficient synthesis and fast rendering of BTFs on arbitrary surfaces. For synthesis, a surface BTF can be generated by applying a texton-based synthesis algorithm to a small set of 2D geometry maps while leaving the companion 4D PAFs untouched. As for rendering, a surface BTF synthesized using geometry maps is well-suited for leveraging the programmable vertex and pixel shaders on the graphics hardware. We present a real-time BTF rendering algorithm that runs at the speed of about 30 frames/second on a mid-level PC with an ATI Radeon 8500 graphics card. We demonstrate the effectiveness of our synthesis and rendering algorithms using both real and synthetic BTF samples.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:10 ,  Issue: 3 )