By Topic

On the parallel computation of the algebraic path problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gen-Huey Chen ; Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Biing-Feng Wang ; Chi-Jen Lu

The algebraic path problem is a general description of a class of problems, including some important graph problems such as transitive closure, all pairs shortest paths, minimum spanning tree, etc. In this work, the algebraic path problem is solved on a processor array with a reconfigurable bus system. The proposed algorithms are based on repeated matrix multiplications. The multiplication of two n×n matrices takes O(log n) time in the worst case, but, for some special cases, O(1) time is possible. It is shown that three instances of the algebraic path problem, transitive closure, all pairs shortest paths, and minimum spanning tree, can be solved in O(log n) time, which is as fast as on the CRCW PRAM

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:3 ,  Issue: 2 )