By Topic

Virtual-channel flow control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
W. J. Dally ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA

Network throughput can be increased by dividing the buffer storage associated with each network channel into several virtual channels. Each physical channel is associated with several small queues, virtual channels, rather than a single deep queue. The virtual channels associated with one physical channel are allocated independently but compete with each other for physical bandwidth. Virtual channels decouple buffer resources from transmission resources. This decoupling allows active messages to pass blocked messages using network bandwidth that would otherwise be left idle. The paper studies the performance of networks using virtual channels using both analysis and simulation. These studies show that virtual channels increase network throughput, by a factor of four for 10-stage networks, and reduce the dependence of throughput on the depth of the network

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:3 ,  Issue: 2 )