Cart (Loading....) | Create Account
Close category search window
 

Dynamic programming approach to a minimum distance optimal control problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Melikyan, A. ; Inst. for Problems in Mech., Acad. of Sci., Moscow, Russia ; Hovakimyan, N. ; Ikeda, Y.

An optimal control problem with minimum-type (non-additive) functional is considered. Such problem has several applications, including air collision avoidance problem for two aircraft. It is known that the Bellman optimality principle is not fulfilled globally for this problem, so that the dynamic programming technique works only in a part of the problem's phase space. The boundary of this part is unknown and has to be found as an element of the solution of a dynamic programming problem with unknown boundary. In some problems this boundary contains optimal (singular) trajectories. The equations for such paths are derived by applying the method of singular characteristics. Some other necessary conditions of optimality are discussed in terms of Bellman equation and Hamiltonian. Examples are given for which the unknown boundary includes and does not include optimal paths. An aircraft collision avoidance problem is discussed.

Published in:

Decision and Control, 2003. Proceedings. 42nd IEEE Conference on  (Volume:1 )

Date of Conference:

9-12 Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.