By Topic

Discrete exterior calculus for variational problems in computer vision and graphics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Desbrun, M. ; Dept. of Comput. Sci., USC, Los Angeles, CA, USA ; Hirani, A.N. ; Marsden, J.E.

The paper demonstrates how discrete exterior calculus (DEC) tools may be useful in computer vision and graphics. A variational approach provides a link with mechanics. Our development of DEC includes discrete differential forms, discrete vector fields and the operators acting on these. This development of a discrete calculus, when combined with the methods of discrete mechanics and other recent work is likely to have promising applications in a field like computer vision which offers such a rich variety of challenging variational problems to be solved computationally. As a specific example we consider the problem of template matching and show how numerical methods derived from a discrete exterior calculus are starting to play an important role in solving the equations of averaged template matching. We also show some example applications using variational problems from computer graphics and mechanics to demonstrate that formulating the problem discretely and using discrete methods for solution can lead to efficient algorithms.

Published in:

Decision and Control, 2003. Proceedings. 42nd IEEE Conference on  (Volume:5 )

Date of Conference:

9-12 Dec. 2003