Cart (Loading....) | Create Account
Close category search window
 

A numerical study on the heat transfer characteristics of two-dimensional inclined impinging jet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramezanpour, A. ; APU Univ., Chelmsford, UK ; Shirvani, H. ; Mirzaee, I.

A two-dimensional numerical study has been applied to predict the heat transfer rate in the turbulence, unconfined, and submerged impinging jet discharged from a slot nozzle to flat and inclined plate by using commercial finite volume code FLUENT. The Reynolds in range of 4000-16000, the nozzle exit-to-plate spacing (H/D) in the range of 4-10 and inclination angle of air jet and plate in range of 40-90 has been considered. The constant heat flux of 100 w / m2 was set to impinging plate. Two k-ε RNG and Reynolds stress models by using the Enhanced Wall Treatment were used in all cases and local Nusselt number on the impinging jet plate was compared with experimental results. The Enhanced Wall Treatment by solving the fully turbulence region and viscous sublayer and using a single function improves effect of pressure gradients and thermal effects. The heat transfer rate in flat plate impinging jet in stagnation point is in its maximum value and then decreases along the wall. In the inclined impinging jet by movement of the stagnation point to uphill side maximum heat transfer rate location moves to uphill side of the plate but decreasing of Nusselt number is more gradually in downhill side. The numerical results predict the heat transfer rate in flat plate impinging jet by less than 10% difference in comparison with experiments however for inclined impinging jet in different HID, the prediction shows 5-20% difference.

Published in:

Electronics Packaging Technology, 2003 5th Conference (EPTC 2003)

Date of Conference:

10-12 Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.