By Topic

Diamond cooling of high-power diode-pumped solid-state lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Tzuk, Y. ; Electro-Opt. Div., Soreq NRC, Yavne, Israel ; Tal, A. ; Goldring, S. ; Glick, Y.
more authors

We have demonstrated the feasibility of cooling high-power solid-state lasers with diamond windows, whose thermal conductivity is about two orders of magnitude higher than that of sapphire. An output power of 200 W was achieved from a single Nd:YVO4 slab in a zigzag configuration when pumped with 600-W diodes at 808 nm. The maximum output power previously reported in the literature using conventional cooling schemes is only about 100 W. A 2.3×4×24 mm3 slab was pumped from its broad side (4×24 mm2) through a 0.3-mm-thick optical diamond window placed in close contact with the lasing crystal. The diamond window, held in a water-cooled copper housing, acted as a heat conductor. The other broad side of the crystal was cooled directly by its water-cooled copper housing. Since pumping and cooling were along the same axis, a Cartesian thermal gradient was achieved, while the zigzag scheme was used to minimize thermal lensing. By using a BBO Q-switch, 70-W average power was obtained at 20 kHz with a pulse width of 19 ns and with a beam quality of 3 and 12 times the diffraction limit in the zigzag and transverse directions, respectively. The output of a two-head configuration was 295 W. In addition, a cavity was designed to achieve increased beam quality and 133 W was accomplished with a beam quality of 2 and 7.5 times diffraction-limited on the zigzag and nonzigzag axes, respectively. Operating this cavity with an RTP Q-switch produced 114 W with a beam quality of 1.5 and 9.5 on the respective two axes.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 3 )