By Topic

Dispersion-managed breathing-mode semiconductor mode-locked ring laser: experimental characterization and numerical simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Resan ; Center for Res. & Educ. in Opt. & Lasers, Univ. of Central Florida, Orlando, FL, USA ; P. J. Delfyett

A dispersion-managed breathing-mode mode-locked semiconductor ring laser is studied. The working regime and pulse evolution at the key cavity points are experimentally characterized and numerically simulated. Linearly chirped, asymmetric exponential pulses are generated and externally compressed to 274 fs, which is within 10% of the bandwidth limit. The close agreement between the simulated and the measured results verifies our ability to control the physical mechanisms involved in pulse formation and shaping within the ring cavity.

Published in:

IEEE Journal of Quantum Electronics  (Volume:40 ,  Issue: 3 )