By Topic

Analysis and design of a novel single-stage high-power-factor electronic ballast based on integrated buck half-bridge resonant inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
J. M. Alonso ; DIEECS - Tecnologia Electron., Univ. de Oviedo, Gijon, Spain ; A. J. Calleja ; J. Ribas ; E. L. Corominas
more authors

A novel single-stage high-power-factor electronic ballast obtained from the integration of a buck DC-to-DC converter and a half-bridge resonant inverter is analyzed in this paper. The buck converter is operated in discontinuous conduction mode and at constant frequency providing an input power factor high enough to satisfy present standard requirements. The operation of the proposed ballast is also investigated in detail in this paper, obtaining the important equations and characteristics in order to allow interested readers to perform an easy design. A ballast prototype supplying two 36 W fluorescent lamps has been both simulated and implemented at the laboratory. The results predict good market possibilities for the proposed topology in terms of reliability, cost, efficiency, and lamp life.

Published in:

IEEE Transactions on Power Electronics  (Volume:19 ,  Issue: 2 )