Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

An integrative and interactive framework for improving biomedical pattern discovery and visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haiying Wang ; Sch. of Comput. & Math., Univ. of Ulster, Jordanstown, UK ; Azuaje, F. ; Black, Norman

Recent progress in medical sciences has led to an explosive growth of data. Due to its inherent complexity and diversity, mining such volumes of data to extract relevant knowledge represents an enormous challenge and opportunity. Interactive pattern discovery and visualization systems for biomedical data mining have received relatively little attention. Emphasis has been traditionally placed on automation and supervised classification problems. Based on self-adaptive neural networks and pattern-validation statistical tools, this paper presents a user-friendly platform to support biomedical pattern discovery and visualization. It has been tested on several types of biomedical data, such as dermatology and cardiology data sets. The results indicate that in comparison to traditional techniques, such as Kohonen Maps, this platform may significantly improve the effectiveness and efficiency of pattern discovery and classification tasks, including problems described by several classes. Furthermore, this study shows how the combination of graphical and statistical tools may make these patterns more meaningful.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:8 ,  Issue: 1 )