Cart (Loading....) | Create Account
Close category search window
 

Capacity of time-slotted ALOHA packetized multiple-access systems over the AWGN channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Medard, M. ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; Jianyi Huang ; Goldsmith, A.J. ; Meyn, S.P.
more authors

We study different notions of capacity for time-slotted ALOHA systems. In these systems, multiple users synchronously send packets in a bursty manner over a common additive white Gaussian noise (AWGN) channel. The users do not coordinate their transmissions, which may collide at the receiver. For such a system, we define both single-slot capacity and multiple-slot capacity. We then construct a coding and decoding scheme for single-slot capacity that achieves any rate within this capacity region. This coding and decoding scheme for a single time slot combines aspects of multiple access rate splitting and of broadcast codes for degraded AWGN channels. This design allows some bits to be reliably received even when collisions occur and more bits to be reliably received in the absence of collisions. The exact number of bits reliably received under both of these scenarios is part of the code design process, which we optimize to maximize the expected rate in each slot. Next, we examine the behavior of the system asymptotically over multiple slots. We show that there exist coding and decoding strategies such that regardless of the burstiness of the traffic, the system is stable as long as the average rate of the users is within the multiple access capacity region of the channel. In other words, we show that bursty traffic does not decrease the Cover-Wyner capacity region of the multiple access channel. A vast family of codes, which includes the type of codes we introduce for the single-slot transmission, achieve the capacity region, in a sense we define, for multiple-slot transmissions. These codes are stabilizing, using only local information at each of the individual queues. The use of information regarding other queues or the use of scheduling does not improve the multiple-slot capacity region.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 2 )

Date of Publication:

March 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.