By Topic

Distributed rate adaptive packet access (DRAPA) for multicell wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yin, H. ; Signal Process. Dept., ViVATO Inc., Spokane, WA, USA ; Hui Liu

Fueled by the explosive growth of the Internet, applications are demanding higher data rates and better services. Given the scarcity of radio resources, higher network capacities need to be achieved through more efficient use of the available bandwidth. Current cellular networks utilize frequency planning schemes that are optimized for circuit-switched applications, and thus is inherently problematic for future wireless packet networks with bursty, high peak-rate traffics. Random access schemes such as the ALOHA are seen as better solutions for packet networks. However, co-channel interference may significantly reduce the network throughput when the multicell load is heavy. In this paper, we propose a distributed rate adaptive packet access (DRAPA) scheme to combine the advantages of rate adaptation (in circuit-switched networks) and random access (in packet-switched networks). In particular, DRAPA allows terminal stations to transmit packets in random access fashion in the presence of brusty interference from neighboring cells. The packet code rate is adjusted according to interference level so that the retransmisson is controlled at an acceptable level. The DRAPA scheme subsumes two traditional schemes as the extreme cases, and has superior performance over the traditional schemes in terms of throughput and stability.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 2 )