By Topic

Exact and Approximate Solutions for the Gate Matrix Layout Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deo, N. ; Computer Science Department, Washington State University, Pullman, WA, USA ; Krishnamoorthy, M.S. ; Langston, M.A.

We consider the gate matrix layout problem for VLSI circuits, which is known to be NP-complete. We present an efficient algorithm for determining whether two tracks suffice. For the general problem of minimizing the number of tracks (and, hence, the area) needed, we design an attractive dynamic programming formulation to guarantee optimality. We also investigate the performance of fast heuristic algorithms published in the literature and demonstrate that there exist families of problem instances for which the ratio of the number of tracks required by these heuristics to the optimal value is unbounded. Moreover, we show that this result holds for any on-line layout algorithm. We additionally prove that, unless P = NP, no polynomial-time layout algorithm can ensure that the number of tracks it requires never exceeds k plus the optimum, for any constant k.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:6 ,  Issue: 1 )