By Topic

Macromodeling and Optimization of Digital MOS VLSI Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matson, M.D. ; Symbolics, Cambridge, MA, USA ; Glasser, L.A.

Power consumption and signal delay are crucial to the design of high-performance VLSI circuits. This paper presents CAD tools for modeling and optimizing digital MOS designs. The tools determine the transistor sizes that minimize circuit power consumption subject to constraints on signal path delays. Computational efficiency is obtained through macromodeling techniques and a specialized optimization algorithm. The macromodels are based on device equations, and encapsulate logic gate behavior in a set of simple yet accurate formulas. The optimization algorithm exploits properties of the digital MOS domain to convert the primal optimization problem into a dual form which is much easier to solve. The result is a pair of CAD tools that can optimize a circuit in roughly the amount of time needed to perform a transistor-level simulation of the circuit.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:5 ,  Issue: 4 )