By Topic

Transient Simulation of Silicon Devices and Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
R. E. Bank ; Mathematics Department, University of California, San Diego, La Jolla, CA, USA ; W. M. Coughran ; W. Fichtner ; E. H. Grosse
more authors

In this paper, we present an overview of the physical principles and numerical methods used to solve the coupled system of nonlinear partial differential equations that model the transient behavior of silicon VLSI device structures. We also describe how the same techniques are applicable to circuit simulation. A composite linear multistep formula is introduced as the time-integration scheme. Newton-iterative methods are exploited to solve the nonlinear equations that arise at each time step. We also present a simple data structure for nonsymmetric matrices with symmetric nonzero structures that facilitates iterative or direct methods with substantial efficiency gains over other storage schemes. Several computational examples, including a CMOS latchup problem, are presented and discussed.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:4 ,  Issue: 4 )