By Topic

Module Placement Based on Resistive Network Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Kuan Cheng ; Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA, USA ; Kuh, E.S.

A new constructive placement and partitioning method based on resistive network optimization is proposed. The objective function used is the sum of the squared wire length. The method has the feature which includes fixed modules in the formulation. The overall algorithm comprises the following subprograms: optimization, scaling, relaxation, partitioning and assignment. The method is efficient because it takes advantage of net-list sparsity and has a complexity of O[n1.4 log n]. Another added special feature is that irregular-size modules within cell rows are allowed. Thus the method is particularly useful in standard-cell and gate-array designs. Experimental results on four 4K gate-array placements are illustrated, and they are far superior than manual placements.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:3 ,  Issue: 3 )