By Topic

Gate Matrix Layout of Random Control Logic in a 32-bit CMOS CPU Chip Adaptable to Evolving Logic Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sung Mo Kang ; Bell Laboratories, Murray Hill, NJ, USA ; Krambeck, R.H. ; Law, H.-F.S. ; Lopez, A.D.

BELLMAC-32A is a single-chip fully 32-bit high-end microprocessor designed in 2.5-?m twin-tub CMOS technology. This paper describes the gate matrix layout of random control logic in BELLMAC-32A with top-down hierarchical design methodology. The gate matrix layout provided (1) parallel team layout efforts, (2) adaptability to evolving logic design with short turnaround time, (3) high packing density competitive with hand layout, (4) compatibility with computer-aided layout and verification tools, (5) capability to fine-tune circuits, and (6) technology updatability. It took 6.5 engineer-years to complete the layout of random control logic with 7000 transistors although the logic design was continuously evolving during the layout period. The average packing density of gate matrix layout was 1500 ?m2 per transistor in random logic and 840 ?m2 per transistor in data path. BELLMAC-32A had more-than-three times performance improvement over its 3.5 ?m technology prototype chip BELLMAC-32, in which random control logic was implemented with polycells.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:2 ,  Issue: 1 )