Cart (Loading....) | Create Account
Close category search window
 

Production control of a manufacturing system with multiple machine states

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sharifnia, A. ; Coll. of Eng., Boston Univ., MA, USA

The production control of a single-product manufacturing system with arbitrary number of machine states (failure modes) is discussed. The objective is to find a production policy that would meet the demand for the product with minimum average inventory or backlog cost. The optimal production policy has a special structure and is called a hedging-point policy. If the hedging points are known, the optimal production rate is readily specified. Assuming a set of tentative hedging points, the simple structure of the optimal policy is utilized to find the steady-state probability distribution of the surplus (inventory or backlog). Once this function is determined, the average surplus cost is easily calculated in terms of the values of the hedging points. The average cost is then minimized to find the optimum hedging points

Published in:

Automatic Control, IEEE Transactions on  (Volume:33 ,  Issue: 7 )

Date of Publication:

Jul 1988

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.